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LETTER TO THE EDITOR 

Universal amplitude in the sizes of rings in two dimensions 

John L Cardy 
Department of Physics, University of California, Santa Barbara, CA 93106, USA 

Received 5 May 1988 

Abstract. For self-avoiding rings of N steps in two dimensions, the limiting value as N + CC 

of the combination NpN(R2),,x; (where pN is the number of distinct rings, ( R 2 ) N  is their 
mean square radius of gyration, and x, is the critical fugacity) is equal to a calculable 
lattice-dependent number times a universal amplitude. This latter quantity is calculated 
exactly using methods of conformal invariance. The value is in good agreement with the 
results of enumeration studies. 

Recently a new result has been obtained which extends the quantitative predictions 
of conformal invariance in two-dimensional critical phenomena into the scaling region, 
away from the critical point (Cardy 1988). It is a quantitative extension of the 
‘c-theorem’ of Zamolodchikov (1986), and it relates the value of the conformal anomaly 
number c, which characterises the critical point theory, to the second moment of the 
energy-energy correlations in the non-critical theory: 

~ = 3 . r r t ~ ( 2 - x € ) ~  r2(E(r)E(0)),d2r (1) I 
where t is proportional to T -  T,, E ( r )  is the energy density, and xE = 2-  v-’ is its 
scaling dimension. The combination tE is normalised so that the reduced Hamiltonian 
is XC+ t E (  r )  d2r, in the continuum limit. Equation (1) has been checked for the 
Ising model (Cardy 1988), where the energy correlations are known exactly (Hecht 
1967). As explained in Cardy (1988), equation (1) is equivalent to a prediction for 
the universal quantity At2, where f ,  is the singular part of the free energy per unit 
area, and the correlation length 6 is defined, at least for a > 0, in terms of the second 
moment of the energy correlations. 

In this letter, we apply this formula to the limit n + 0 of the O ( n )  model, which 
corresponds to self-avoiding walks (de Gennes 1972, des Cloizeaux 1975). In this 
mapping, the magnetic correlations give information about open walks, or linear 
polymers, while the energy correlations relate to closed walks, or rings. It turns out 
that the universality of the right-hand side of ( l ) ,  or, equivalently of f,t2, implies the 
universality (up to calculable lattice-dependent factors) of the combination 
NpN(R2),x: defined in the abstract. In addition, from the known dependence of c ( n )  
for the O(n) model, we can compute its value. The universality of this combination, 
with, however, (R*)N  being the mean square radius of gyration of open N-step walks, 
was first predicted, and its lattice independence verified, by Privman and Redner (1985). 

Explicitly, consider a regular lattice with a reduced Hamiltonian 

X=-X 1 E(r) .  
bonds 
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Here E (  r )  = si sj,  where i, j label the sites at the end of the bond at r, and the si are 
n-component vectors, normalised so that Tr sss; = SabSij. This theory has a critical 
point at x = x, .  Equation ( 1 )  may then be written on the lattice as a double sum over 
bonds r, r’: 

where A is the total area and Nb is the total number of bonds in the lattice. If the 
correlation function is evaluated in an expansion in x, it is given, as n -, 0, by a sum 
of diagrams in which two self-avoiding walks connect the ends of the bonds at r, r‘ 
to form a single ring. The contribution of a given ring of length N, with bonds at 
( r l ,  r 2 ,  . . .), to the sum in ( 2 )  is then 

2nxN-’  ( rk - rr )2 .  
k, I 

( 4 )  

Note the factor of two, which corresponds to the fact that, in the sum over pairs of 
walks, each ring appears twice. The sum in (4) is, for a given ring, equal to 2 N 2 R i ,  
where Rb is its bond-weighted radius of gyration, that is, calculated by imagining that 
equal masses are situated at the midpoints of the bonds. If the average of this quantity 
over all rings of length N is denoted by ( R i ) N  and the total number of such rings is 
N,pN, where N, is the total number of sites in the lattice, then the sum in ( 3 )  may be 
written as 

N 

so that finally, taking the limit n + 0, 

N 2 p , ( R i ) N X N  =(?)’(:) - I  c‘(0) X 2  

1 2 4 2  -xE)2 ( x c -  X ) * ’  N 

The value of the central charge c ( n )  for the O ( n )  model is known, both from 
matching exponents (Dotsenko and Fateev 1984, Singh and Shastry 1985), and from 
calculations of the free energy of a frustrated Gaussian model defined on a cylinder 
(Blote et al 1986) to be c = 1 - 6 / m (  m + 1 )  where n = 2 cos(n/m). Note that c vanishes 
at n = 0, as it must, since the free energy is then zero. However, its derivative is finite, 
and we find c’(0) = 5/37r. The fact that the right-hand side of ( 6 )  behaves like ( x  - x,)-* 
as x + x ,  implies that N2pN(Rt)N behaves like N x i N  as N-,co. Using the result 
2 - x E  = $, we then find that for a square lattice 

5 lim N ~ N ( R Z , ) , X , ~ ;  =- 
N -00 16a” (7 )  

Privman and Rudnick (1985) have measured the radii of gyration of rings on the 
square lattice up to 28 steps. They in fact consider the site-weighted radius of gyration 
R , ,  but it is straightforward to show that this is related to the bond-weighted case by 
R i  = R: - a .  In comparing the prediction of equation ( 6 )  with this data we have chosen 
to treat the factor of x2 in the numerator exactly, not replacing it by x f  . This corresponds 
to including a correction factor (1 - 2 / N ) - ’  on the left-hand side of equation (7)  for 
finite N. This procedure eliminates the strongest of the O( N - ’ )  corrections. In figure 
1 we show the results for this quantity, using the central value for the critical fugacity 
x, =2.638 155 obtained from an enumeration of rings up to 46 steps by Enting and - I  
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Guttmann (1985). Anticipating a correction to the scaling term of the form N - e ,  the 
data are plotted against this quantity, using the theoretically expected value 6 = v = 0.75 
(Privman et a1 1984). As may be seen, they extrapolate well to the predicted asymptotic 
value, although some curvature appears in the plot for smaller values of N. A better 
straight line fit may be obtained by taking an effective exponent 6=0.85, without 
disturbing the agreement with the asymptotic value. 

To summarise, we have made a prediction of conformal invariance for the sizes of 
self-avoiding rings, and shown that it agrees well with numerical data. Since a number 
of different elements of the theory went into this prediction, its success may be viewed 
as an important confirmation of these ideas. 

The author thanks V Privman for comments. This work was supported by NSF grant 
no PHY 86-14185. 

References 

Blote H W, Cardy J L and Nightingale M P 1986 f h y s .  Rev. Lett. 56 742 
Cardy J L 1988 to be published 
de Gennes P G 1972 Phys. Lett. 38A 339 
des Cloizeaux J 1975 J. Physique 36 281 
Dotsenko VI and Fateev V A 1984 Nucl. Phys. B 240 312 
Enting I and Guttmann A J 1985 J.  Phys. A: M a t h .  Gen .  18 1007 
Hecht R 1967 fhys .  Rev. 158 557 
Privman V, Family F and Margolina A 1984 J.  fhys .  A: M a t h .  Gen .  17 2837 
Privman V and Redner S 1985 J .  Phys. A: M a t h .  Gen. 18 L781 
Privman V and Rudnick J 1985 J. Phys. A: M a t h .  G e n .  18 L789 
Singh V and Shastry B S 1985 f r a m i n a  25 519 
Zamolodchikov A B 1986 Zh. Eksp. Teor. Fiz. fis. Red. 43 565 (Engl. transl. 1986 J E W  Lerr. 43 730) 


